<u>Série Nº:16</u>

(Trigonométrie)

EXERCICE N°1:

I) Sans utiliser la calculatrice, calculer :

$$A = sin\left(\frac{\pi}{7}\right) + sin\left(\frac{5\pi}{14}\right) - cos\left(\frac{\pi}{7}\right) - cos\left(\frac{5\pi}{14}\right)$$

$$B = tan\left(\frac{\pi}{8}\right) - cot\left(\frac{\pi}{8}\right) + tan\left(\frac{3\pi}{8}\right) - cot\left(\frac{3\pi}{8}\right)$$

II) Sans utiliser la calculatrice, calculer :

$$E = cos\left(\frac{\pi}{17}\right) + cos\left(\frac{3\pi}{17}\right) + cos\left(\frac{5\pi}{17}\right) + cos\left(\frac{7\pi}{17}\right) + cos\left(\frac{10\pi}{17}\right) + cos\left(\frac{12\pi}{17}\right) + cos\left(\frac{14\pi}{17}\right) + cos\left(\frac{16\pi}{17}\right) + cos\left($$

$$F = cos^2 \left(\frac{\pi}{7}\right) + cos^2 \left(\frac{2\pi}{5}\right) + sin^2 \left(\frac{6\pi}{7}\right) + sin^2 \left(\frac{3\pi}{5}\right)$$

III) On sait que $\cos x = \frac{\sqrt{5}}{4}$, calculer $\sin x$, tanx et $\cot x$.

1/ Calculer: $\cos x$, $\sin(\pi - x)$, $\cos(\pi - x)$, $\sin(\frac{\pi}{2} - x)$ et $\cos(\frac{\pi}{2} - x)$

2/ En déduire la valeur de l'expression : $A = cos(\pi - x) + sin(\frac{\pi}{2} - x) + cos(\frac{\pi}{2} - x)$

EXERCICE N°3 : 1) Soit
$$A = \frac{1}{1 - \cos x} + \frac{1}{1 + \cos x}$$
 1/ Déterminer les réels x de $[0,\pi]$ pour lesquels A existe.

2/ Simplifier l'expression de A puis Trouver les réels x de $]0,\pi[$ tels que : A = $\frac{8}{3}$

II) Soit $x \in [0,\pi]$

1/Montrer que : (cosx + sinx - 1)(cosx + sinx + 1) = 2sinx.cosx.

2/ Résoudre alors : $(\cos x + \sin x - 1)(\cos x + \sin x + 1) = 0$

III) Montrer les égalités suivantes :

$$1/4\sin^2 x + 3\cos^2 x = (2 - \cos x)(2 + \cos x)$$

$$2/\cos^4 x + 2\sin^2 x.\cos^2 x + \sin^4 x = 1$$

$$3/\frac{\cos^8 x - \sin^8 x}{\cos^4 x + \sin^4 x} = \cos^2 x - \sin^2 x$$

IV) Simplifier: $\cos^4(3 - 2\cos^2 x) + \sin^4(3 - 2\sin^2 x)$

EXERCICE N°4:

I) Résoudre dans $[0,\pi]$

$$1/(2\cos x - 1)(2\sin x - 5) = 0$$
 $2/(1 + \cos x)(4\sin^2 x - 1) = 0$

$$3/2\sin^2 x - 3\sin x + 1 = 0$$
 $4/\tan^2 x - (1 + \sqrt{3})\tan x + \sqrt{3} = 0$

II) Sachant que,
$$\cos(\frac{\pi}{8}) = \frac{\sqrt{2+\sqrt{2}}}{2}$$
 calculer $\sin(\frac{\pi}{8})$; $\sin(\frac{3\pi}{8})$ et $\cos(\frac{7\pi}{8})$

EXERCICE N°5:

Soit la fonction f définie sur $[0,\pi]$, par $f(x) = -2\cos^2 x + \sin x - 1$

1/ Calculer $f(\pi)$, $f(\frac{\pi}{3})$ et $f(\frac{\pi}{4})$

2/ a- Montrer que pour tout $x \in [0,\pi]$, $f(\pi - x) = f(x)$.

b- Calculer $f(\frac{3\pi}{4})$ et $f(\frac{5\pi}{6})$ 3/ Montrer que pour tout $x \in [0,\pi]$; $f(x) = 2\sin^2 x + \sin x - 3$.

4/ a- Résoudre dans $[0,\pi]$; l'équation f(x) = 0.

b- Factoriser l'expression de f(x).

c- En déduire que pour tout $x \in [0,\pi]$; $f(x) \le 0$.

EXERCICE N°6:

1) Soit ABC un triangle tel que : AB = 7, AC = 9 et $\hat{A} = 60^{\circ}$, calculer l'aire de ce triangle.

II) Soit ABC un triangle tel que : AB = 8, AC = 7 et $\hat{A} = 120^{\circ}$.

a- Calculer BC.

b- calculer l'aire de ce triangle.

III) Dans un triangle rectangle en A, on a : AB = 3 et AC = 4.

Calculer BC, AH, BH et CH où h set le pied de la hauteur issue de A.

EXERCICE N°7:

Soit ABC un triangle tel que : AB = 5, AC = 8 et BC = 7.

1/ A l'aide du théorème d'ELKASHI, montrer que , $\cos \hat{A} = \frac{1}{2}$ puis déduire \hat{A} .

2/ Soit H le projeté orthogonal de C sur (AB). Calculer CH puis BH.

3/ Calculer l'aire S du triangle ABC.

4/ Déterminer le rayon R du cercle circonscrit au triangle ABC.

EXERCICE N°8:

Soit ABC un triangle tel que : $BAC = \frac{\pi}{4}$, $AC = 3\sqrt{2}$ et BC = 6

1/ a- Calculer : sin ABC

b- Montrer que : $A\hat{B}C = \frac{\pi}{6}$, et calculer $A\hat{C}B$ en radians.

2/ Soit [CH] la hauteur issue de C dans le triangle ABC.

a- Calculer BH, AH et AB.

b- En déduire la valeur de $\cos(\frac{7\pi}{42})$